If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-10x-19=0
a = 5; b = -10; c = -19;
Δ = b2-4ac
Δ = -102-4·5·(-19)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{30}}{2*5}=\frac{10-4\sqrt{30}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{30}}{2*5}=\frac{10+4\sqrt{30}}{10} $
| 5x+2+1=-3+10x | | 90=3x+14+46 | | 0.1x(x+10)=0,3x-4 | | a–4=3a+8 | | 3(4n-2)+5=47 | | 8x-35x-11=90 | | 6-x=x^2-20x+100 | | (-3*4)-8y=-14 | | p+3=p+5 | | (4x+2)°(x+18)°=50° | | 5x+3=2(x+1) | | 4.1x3.7= | | 2m+4(m-3)=7m-(4) | | 6.8=-3.9-(-8.9-1)-2x | | (4y-2)(3-y)=0 | | 1/8a+(-7)=0 | | 42=a-19 | | 29.5x+548=2023 | | (x+24)3x=180 | | -4y^2+14y-6=0 | | (4x+19)+(9x-8)+90(7x-3)+122=540 | | g–62=14 | | 260-6x=300-10x | | 0.3*m=6 | | -2/5x+3=2/3×+1/3 | | 2{8+k}=22 | | 7.3x=36 | | 19)2x=7 | | 3+4x=-3+3+6x | | k+7.2=19.5 | | 5x^2-7,5x=0 | | 2x/12=18/3x |